
• Thermodynamics:
– To study the direction of a reaction, or if a reaction can 

take place. (ΔG<0)
– To study the equilibrium states in which state variables of 

a system do not change with time.

• Kinetics:
– To study the rates and paths of a reaction adopted by 

the systems approaching equilibrium.
– To study the rate-limiting steps of a reaction
– To study the controlling factors of the rate-limiting steps

Thermodynamics vs. Kinetics

Input OutputKinetic Processes
• Rate-limiting steps
• Controlling factors



Thermodynamics vs. Kinetics

Reaction Rate α (Kinetic factor) x (Thermodynamic factor)
* Kinetic factor relates to Q (activation energy), while the 
thermodynamic factor relates to the driving force, ΔG=G2-G1.

* The thermodynamic factor decides the direction of a reaction, 
while the kinetic factor, the rate of reaction.

G1

G2

Initial   Activated       Final
State      State State

Q

ΔG



Kinetic theory: The reaction rate is proportional to the probability 
to reach activated state that follows the Arrhenius
rate equation, exp(-Q /RT).

* The activation energy (Q) can be obtained from the slope of curve 
plotted as ln (reaction rate) vs. 1/T

Example: For diamond growth by CVD from reaction of methane and hydrogen

- Q/R



Kinetic factor increased by changing temperature or 
adding catalysts.

Examples: (1) N2 + 3H2 = 2NH3 using iron as a catalyst
(2) 2CO + 2NO = 2CO2 + N2 using Pt and Rh as 

catalysts for catalytic converters used in automobile

Activation energy (Q) 
without catalyst

Activation energy (Q) 
with catalystReactants
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Progress of Reaction

ΔG<0



Examples: Thermodynamically favorable but 
kinetically unfavorable phase changes

(1) Is a diamond forever? 

Diamond Graphite
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Progress of Reaction

ΔG=-2.9KJ/mol

Very large Q



(2) Crystallization of glasses

Supercooled
liquid

Shrinkage due 
to freezing

50m

1 h

2 h

8 h

CaO-SrO-BaO-B2O3-SiO2 glass-ceramics annealed at 875oC

Pseudowollastonite
(Ca,Ba,Sr)SiO3

Cristobalite SiO2



Diffusion driven by decrease in chemical potential

Free energy of diffusion couple = G3
Diffusion taking place to homogenize 
to obtain G4

μ1
B>μ2

BB diffusing from (1)→(2)

μ2
A>μ1

A A diffusing from (2)→(1)

Down-hill Diffusion

* Down-hill diffusion
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μ1
B<μ2

BB diffusing from (2)
to (1)

μ2
A<μ1

A A diffusing from (1)
to (2)

Up-hill Diffusion

* Up-hill Diffusion
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Free energy of diffusion couple = G3
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Diffusion:
Process by which matter is transported through matter as a result of 
molecular motions

General scheme for transport phenomena

Flux α Driving force α Gradient in potential
Matter     J   α dC/dx α Concentration potential
Heat        q   α dT/dx α Temperature potential
Electricity  I   α dψ/dx α Electrical potential
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Fick’s First Law:
Species migrates from a region of high concentration to a region of   
low concentration；in general the rate of diffusion is proportional to 
the concentration gradient

CJ D
x


 


* Flux (J) : Mass/(area‧time), e.g., g/(cm2‧sec)

* Minus (-): Matter moves from high to low concentration.

* Diffusivity (D): Diffusivity related to atomic mobility and crystal 
structure, e.g., cm2/sec (independent of 
concentration gradient) 

* Concentration gradient (    ): Gradient in ”Mass Potential,”
e.g., g‧cm-3/cm
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( )C C x

Steady State:

Concentration at a given point 
is invariant with time

i.e., 

J≠J(x,t) when area is fixed

Key: to describe C(x,t) quantitatively
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CSteady State Solution :C( ) = A + B = C -
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Steady State: Constant flux if the area is fixed.

Equilibrium State: No Flux

μ: Chemical Potential
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Steady State:

area is fixed

Under any conditions

when D is constantC C
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Fick’s Second Law
Transient State: C=C(x,t), or J=J(x,t)
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From Taylor Series

JX
JX+ΔX

X X+ΔX

A (area)
accumulation or depletion of concentration exists

Mass Conservation

x x x
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Flux · Area = Rate of change of concentration · volume
(g cm-2sec-1· cm2 = g cm-3sec-1 · cm3)

(A is fixed)
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Fick’s Second Law (cont.)
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Linear partial differential equation
Solutions are additive
Solutions require initial and boundary conditions

Fick’s Second Law
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Transient State:
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C*

2δ

Transient State --Thin-film solution (Infinite Sink)

A quantity of solute, S, is plated as a thin film on one end of a long rod of solute-free
material, then a similar solute-free rod is welded to the plated end.

t
 
 

2

2
C CFick's 2nd Law : =D

x

I.C.  C(x,0)= 0     |x|>δ
C(x,0)= C*   |x|≤δ

B.C.  C(∞,t)=0
C(-∞,t)=0

Annealed for time (t)  Determine concentration profile of the solute.

Assuming          D ≠ D(x)    (Constant diffusivity)
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Transient State --Thin-film solution (Infinite Sink)

Time
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2Thus a graph of ln( ( , ) (0, ) ) against x  should yield a straight line 
with a slope of 1 4 .

C x t C t
Dt

Conservation of mass

S’= g/cm2 (Surface Concentration)
C*= g/cm3

Taking the natural logarithm of both sides yields
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C t Dt

 

(A: constant)



2( , )ln( ) .
(0, )

C x tif vs x
C t

is not a linear relation, D is a function of concentration. 
If it is linear, D is independent of concentration.
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Thin Film Solution
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Leak Test
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The above analyses are only good for a thin film in the middle of 
an “Infinite Bar”. If it is not infinite, the diffusion will be reflected
back into the specimen when it reaches the end of the bar, and 
concentration in that region will be higher than the above solution.
Q: How long is long enough to be considered infinite?
Leak Test
Arbitrarily taking 0.1% as a sufficiently insignificant concentration
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4.6l Dt 

4.6l Dt The bar is considered to be long enough
to use a thin-film solution with 99.9% 
accuracy.  

(Check the Table of Error Function)



Superposition
(1) No interaction from adjacent slabs
(2) Superposition of the distributions 

from the individual slabs since the 
diffusion equation is linear and additive.

Solution for a pair of Semi-infinite Solids
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Sum the solution of all thin slabs
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Note: 
If the concentration is fixed (C=C*), 
the term of               is then also fixed. 
This means that the penetration distance
is a function of the square root of 

the diffusion time. For example, if a 
diffusion penetration of 0.1mm 
develops in one hour, it will take 
4 hours to develop a penetration 
of 0.2 mm.

/ 2x Dt



The above analyses are only good for an “Infinite Slab”. 
If it is not infinite, the diffusion will be reflected
back into the specimen when it reaches the end of the bar, and 
concentration in that region will be higher than the above solution.

Q: How long is long enough to be considered infinite?
Leak Test
Arbitrarily taking 0.1% as a sufficiently insignificant concentration
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Using B.C. to solve the problem

Examples

(1) if C(0, t) = 0 '( , ) ( )
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(2) if C(0, t) = C”=A,  C(∞,t)=C’
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Error Function & its Derivatives

Note: (2) is the thin film solution
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Diffusion from a Limited Source (thin film)
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:Gaussian function 

Example: p-n junction
C’= Background Concentration
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Diffusion from a Constant Source
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: the amount of dopant entering the base

Example: p-n junction
C’= Background Concentration
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Series Solutions
Small system + long time
Real solution to all systems without assumptions of  “Infinite System”

Assuming the solution can be represented by
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Separation of Variables
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where T0 is a constant, -λ2 is chosen because one deals with the system
in which any inhomogeneities disappear as time passes, i.e., T approaches 
zero as time increases.

Since they vary independently, both sides must be equal to a constant, 
designated as -λ2 where λis a real number
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The equation in is

the solution to this equation is of the form
'( ) sin( ) cos( )x A x B x   

where A’ and B’ are functions of λ
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But if this solution holds for any real value ofλ, then a sum of solutions 
with different values ofλ is also a solution. Thus in its most general form
the product solution will be infinite series of the form
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Example :”Diffusion out of a Slab”
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Note: Each successive term is smaller than the preceding one, and the percentage 
decreases between terms and increases exponentially with time.  Thus after a short
time has elapsed, the infinite series can be satisfactorily represented by only a few
terms. To determine the error, we compare the ratio of the maximum values of the
first and second terms (R) 2
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The error in using the first term to represent C(x,t) is less than 1% at all points.
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Degassing of Metals
It is difficult to measure the concentration of gas at various depths, and what is 

experimentally determined is the quantity of gas which has been given off or the 
quantity remaining in the metal.  Therefore, the average concentration (   ) is used.
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0( ) 0.8C t CWhen                    the first term is a good approximation to the solution or when t is
sufficiently large
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Solutions for Variable D
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 makes this equation inhomogeneous, especially when D=D(C) or D(T) or D(t) or D(x). 

The key in solving the above p.d.e. is to simplify the equation with x and t to x or t function.

Boltzman-Matano Analysis (D=D(C))
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* x=0 is not determined yet
If D≠D(C), C=Co/2 which determines x=0 for an 
infinite system.  However, if D=D(C) the above 
condition is no longer valid, the x=0 must be 
determined by

which expresses the equality of the two shaded areas.

Example: Infinite System I.C. C(x,0)=Co  x<0η= -∞
C(x,0)=0   x>0η= ∞
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which is an additional boundary 
condition and determines the 
location of Matano interface.
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The Moving Boundary Problem
*Diffusion controlling process along with reaction at phase boundary

  ?dS
dt Kinetic Issue
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To have net diffusion flux 
between  and , the 
thickness of  +  has to 
vanish.

Decarburization
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Carburization: -Fe   -Fe
Decarburization: -Fe  -Fe 

Decarburization
forming  phase 
at the interface

Carburization
forming  phase 
at the interface

Decarburization

Carburization
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A: area for diffusion: constant
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Mass Conservation
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known parameters:
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Example: Carburization

*Rate of advance of boundary controlled by diffusion of carbon in Fe. Therefore
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* Semi-infinite solid
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0V   mass flux requiring no density correction

*Chemical activity of carbon at surface can be set up by
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Fick’s 2nd law
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Note: the only unknown parameter in the above equation is β
* *

0( , , , , )C C
sC C C C D and D are known parameters   

Use them to estimate B’ and B, 
and then to solve β
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Example: Decarburization
0.4% Carbon Alloy Steel
T=800oC
Cs=0.01% (equilibrium by CO and CO2)
t = 30 min  S-Fe?

Answer: Co=0.4%, Cs=0.01%
C*=0.24%, C*=0.02% (Obtained from Fe-C Phase Diagram)
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723<T<910℃

Carburization
S





CI*
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De-carburization
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Fe3c
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De-carburization
S
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Cs

Co
T>723℃

De-carburization

Formation of a single-phase layer from an initial two-phase mixture
In the two-phase region, the average composition, Co, is assumed to be uniform, 
which requires, in effect, that the grain size is small and that second-phase dispersion 
is uniform.

3α+Fe C


